skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Andreeva, Rayna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metric magnitude of a point cloud is a measure of its ``size. It has been adapted to various mathematical contexts and recent work suggests that it can enhance machine learning and optimization algorithms. But its usability is limited due to the computational cost when the dataset is large or when the computation must be carried out repeatedly (e.g. in model training). In this paper, we study the magnitude computation problem, and show efficient ways of approximating it. We show that it can be cast as a convex optimization problem, but not as a submodular optimization. The paper describes two new algorithms -- an iterative approximation algorithm that converges fast and is accurate in practice, and a subset selection method that makes the computation even faster. It has previously been proposed that the magnitude of model sequences generated during stochastic gradient descent is correlated to the generalization gap. Extension of this result using our more scalable algorithms shows that longer sequences bear higher correlations. We also describe new applications of magnitude in machine learning -- as an effective regularizer for neural network training, and as a novel clustering criterion. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026